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Mathematical modelling of the natural gas markets using an oligopolistic

approach (strategic players owning market powers).

Smeers (2008): a meticulous review of the existing models

—» EUGAS- MAGELAN - TIGER
Pure and perfect competition modelling.

— The Baker Institute World Trade Gas Model
— NATGAS Oligopolistic approach. Linearity of the
— GASTALE demand function. These models do not
— » GASMOD consider the possible fuels substitution .
— WGM Long term contracts are exogenous.

] . Double marginalization assumptions.

A wish list:

* An enhanced representation of the demand side (capturing the dynamics, the
possible interfuel substitutions).

« Market structure: a more detailed representation of the midstream players.
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1. Construction of a demand function

— A System Dynamics approach.

2. The GaMMES model

Market structure description.
Strategic games and decision variables.

Generalised Nash Cournot games and long-term contracts.

RER

Storage and transport operators.

3. Shale gas in Europe.
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®» Moxnes (1986): a SD approach to model to the dynamics of
Interfuel substitution in the industrial sector.

m aputty-clay model that uses a vintage representation of capital stock
to capture the effect of both past and current energy prices on current fuel
consumption.

» Methodology:
1. Construction of an adapted and updated version of the model

2. Validation : application to model the industrial and total energy
consumption between 1978 and 2005 in different countries.

3. Construction of a demand function: a « pseudo data » approach
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® At time t, the share s; of fuel i for the new equipment is:

/ A switching parameter

e_aci (to be calibrated)
S =
L Xea
e i
where Capital cost Fuel price CO, price

\ \ \

~ PBT, ofo A B

Operating cost \

o A relative premium
Burner Efficiency (to be calibrated)
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® for each fuel i,

~ S EDF

New KN, Old KO,
I3 T,
i KN ) >
7 i > KOI —>
where [ = s;]
and Energy demand f .
KO;
I="ix f(ED - K
>R £ )
P \
Scrapped old Global capacity of all the
Tex . burners burners

K =) .(KN;+ KO;)

ED - K
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Validation

® Calibration of the unknown parameters
m initial stock of equipments, switching parameter, fuel premiums

Example: industrial annual fuel consumption (1978, 2008)
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® A « pseudo data » approach : ceteris paribus simulation of the
Intantaneous relation Q ,(Pgas)

Canada, industrial sector, natural gas, 2009
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® A « pseudo data » approach : ceteris paribus simulation of the
Intantaneous relation Q ,(Pgas)

Canada, industrial sector, natural gas, 2009
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1. Construction of a demand function

— A System Dynamics approach.

2. The GaMMES model

Market structure description.
Strategic games and decision variables.

Generalised Nash Cournot games and long-term contracts.

RER

Storage and transport operators.

3. Shale gas in Europe.
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» Two type of strategic players

— The upstream ones: Producers and dedicated traders. E.g. Russia and Gazprom.

The downstream ones: The independent traders sell back their gas to the end-

— users. E.g: Ruhrgas-e one, GDFSuez etc.

A producer can either
» establish long-term contracts (LTCs) with the independent traders

» or sell his gas directly to the end-users.

» LTC: a bilateral contract between a producer and an independent trader. The unit

selling/purchase price and the quantity are endogenously determined.

» The demand side: an aggregated demand function for each market.

» The independent/dedicated traders interact thanks to a Generalized Nash-Cournot

competition on the final markets: they can exert market power.
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The model is dynamic: horizon 40 years.

« Two "seasons by year": high/low demand regimes.

——  summer/winter production
—=>  summaer/winter prices spread

Upstream :

e Each producer has access to a certain number of fields with different production
cost functions.

« Each producer has the possibility to invest in order to increase the production
capacity of each field.

» The fields flexibility is taken into consideration (maximal spread between

summer/winter productions).
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» We choose a Golombek functional form to model the production cost on a given field.

* If at year t the production is q, the marginal production cost is:

de _ 1 (@4
d@(t_,q)—a.—l—bq—l—cln( -

)

» The parameters a, b, and ¢ depend on the previous produced quantities (before year t).

* Q is the finite reserve of the considered field.

€
~ S €DF

« Dynamically, the total cost can be rewritten as follows ', = Zt ot (C(Zt’gt gy ) — C(Z:t,<7j qtf)>

(5 Discount factor

(Jt Quantity produced at year t

Main advantages:
* It takes into account the exhaustible nature of
the gas resource.

» Convexity of the production function.

cost
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Transport

* We model a global transport operator whose objective is to minimize the overall

transport/congestion costs over the network.
» The flows capacities through the arcs can be increased dynamically thanks to investments

made by the pipeline operator.

Storage

* We model a set of storage sites nodes operated by a regulated storage operator.

* Each independent trader is able to store/withdraw natural gas to satisfy high demand

regimes (with associated transport/reservation/injection/withdrawal unit costs).

» The storage capacities can be increased dynamically thanks to investments made by the
storage operator.
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» The model details the optimization programes of each player.

The producers and their dedicated traders control:
» The quantities produced each year, from each field and at each season.

» The volumes sold to the independent traders using LTCs.

| —

» The volume sold on the spot markets (to the end-users).

» The production investments.

The independent traders control:

» The volumes sold to the end-users on the spot market at each year and each season.
| e—

» The stored and withdrawn quantities at each storage node.

The transport operator controls:
= » The flows through the arcs of the network.

* The infrastructure capacity investments.

wajqoid J0uIN0D-YseN pazifelauss

The storage operator controls:
* The volumes stored at each site.

» The storage capacity investments.
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The model formulation

Exogenous factors

P set of producers-dedicated traders
I set of independent traders
D set of gas consuming countries in the downstream market
(no distinction between the sectors) D C N
T time T'={0,1,2, ..., Num}
M set of seasons. Off-peak (low-consumption) and peak (high-consumption) regimes
F set of all the gas production fields. FF C N
N set of the nodes
S set of the storage sites S C N
A set of the arcs (topology)
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Endogenous variables

quantity of gas produced by p from field f for the end-use market d, year f. season m

in Bem

quantity of gas produced by p from field f dedicated to the long-term contract

with trader i, year f, season m

in Bem

quantity of gas bought by trader i from producer p with a long-term contract

vear t, season m

in Bem

quantity of gas sold by producer p to trader i with a long-term contract, each vear

in Bem

quantity of gas bought by trader i from producer p on the long-term contract. each vear

in Bem

quantity of gas sold by i to the market d, year f, season m

in Bem

producer p's increase of field f’s production capacity. due to investments in production, vear t
in Bem /time unit

production of producer p from field f, vear f, season m

in Bem

market d's gas price, result of the Cournot competition between all the traders, vear t. season m
in $/cm
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long-term contract price contracted between producer p and trader i

in §/cm

amount of storage capacity reserved by trader i at site s, year ¢

in Bem

volume injected by trader i at site s, vear ¢

in Bem

increase of storage capacity at site s, yvear t due to the storage operator investments
in Bem /time unit

increase of the pipeline capacity through arc a, vear ¢, due to the TSO investments
in Bem/time unit

gas quantity that flows through arc a from producer p

vear t, season m

in Bem

gas quantity that fows through arc a from trader i

vear t, season m

in Bem

the dual variable associated with arc a capacity constraint

vear t, season m

in §/cm. It represents the congestion transportation cost over arc a

<3
S €EDF

- €nergies
(lanouvelles
U



QERSI7
i Yo \J

2 > =
N/ ~ ~ €DF

LN Q
TRy LA

Producers' maximization program and feasibility set

Max
Z 8 npi( 20k, fpi) »  LTC sales
t!m.'f.'i
—F £ Spot markets sales (market
+ ) (Pimfffnfpd +$fnfpd)) Tn fpd > power)
t‘.m.'f.'d
N
i -
Sy (S X e By
t.f Eag ™ \ .
> Production costs
S per (i )
A t<t m
7 Z ﬁtfpfi'p_ffp »  Production investments costs
L. f
_ Z 5?:((1"(3& + Tgm)fpilpﬂ) » Transportation costs
t.m.p.a
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Resource constraint

Production capacity constraint
(including investments)

Production > sales

Flexibility constraints

Transportation flows
management

lest™ = urchasest’m
sales;”" ;= p A
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Deriving the price of aLTC

Sales from p to i = purchases of i from p

Dual variable

Dual variable = shadow LTC price between p and |
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Min
£t S =" 1
Z 0 (i Ca T ‘ma} prmpa
f,m,a r
» Transport and congestion costs
ot t 53
m Z 0 {-i Ca T+ Tma} Zfimia
t.m.a i
et 3 E
EZ: 0" Tkaiky » Infrastructure investment costs
]

such that:

Ve s @ Y TPt ), P = | The+ ). dkk] =D ,Capacity constraint
B i t'<t—delayy A (|nC|Ud|ng

investments)
Vi, m, p, . Y M6anfBhpa(1 —10885) = ) " MBan [P
. t . £
+D Migngryr =D D M3unZr, s
f d f Flows balance through the
o Z Z M2in2pt, i =0 (apl,,) | network due to producers
i decisions
¥t, m, i, n, Y M6an fitnia(1 — 1088a) — > MBan it
a a
— > MBunhia + Y M2y2it,
d p Flows balance through
_(_1)™ M4, int. () sk the network due to
(=1) ; ' (@2rmin) independent traders
vt, m, a, p, 1, fpfnpﬂ. fit ik >0 decisions

P> : : : . .
- Dual variable = shadow price for the congestion cost through arc a @#’Z’ﬂa}ii
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The storage operator optimization program and feasibility set

Min
Z 6'Is,ist > Storage investment costs
t.s
such that:
Wt 8, Z ?’Es — Ksg — E .3'52’ <0 — S_toragg ca_lpacity constraint
. T (including investments)
L St—delays
%L, s, ist > ()
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» We need to write the first order conditions to solve the model optimization programes.

» K.K.T. conditions.

» Demonstration of the concavity of all the objective functions to ensure the existence of the
Nash-Cournot equilibrium.

* The model is formulated as a Mixed Complementarity Problem (M.C.P.).

» The feasibility set of each player depends on the decision variables of some other

players.
=mmp Generalized Nash-Cournot game.

* A G.N.C. game has usually an infinite set of solutions.
» Necessity to find and characterize the solution we look for (economic interpretation etc.).
* Distinction VI / QVI formulations and solutions.

* The model has been solved using the PATH solver.

- €nergies
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1. Construction of a demand function

— A System Dynamics approach.

2. The GaMMES model

Market structure description.
Strategic games and decision variables.

Generalised Nash Cournot games and long-term contracts.

RER

Storage and transport operators.

3. Shale gas in Europe.
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* Reserves and existing production and transport infrastructure.
source: MAGELAN, Koln university.
Capacity expansion’s depreciation: MAGELAN/ Stéderbergh (2010). (Energy Policy)

 Production and transport costs: CAPEX from MAGELAN (updated using CERA's
inflation index UCCI).

» The demand calibration: the industrial price is used as a proxy for the market
price. Source: OECD. (IEA, Energy statistics).

Shale gas: « Breaking with convention », CERA, october 2010.

» Long-term marginal production cost curves, reserves and scenarios of the production
capacity expansion. Differenciation by country.
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'ests of the model : 2005-2010

GaMMES model/Real data: Consumption in 2005

BGaMMES
BReal data

Bem/year

GaMMES model/Real data: Prices in 2005
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mReal data

Consumption

Price
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Shale gas in Europe

Case 0
Impact on the European production

Natural gas sales
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Case 0

Impact on the production
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Case 0

Impact on the production
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Case 0

Impact on the production
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Impact on the production

11% of shale gas
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European Shale gas production
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Impact on the consumption
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Case 0

Impact on the consumption
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Impact on the consumption
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* We have developed a dynamic Generalized Nash-Cournot model to
describe the natural gas markets.

* We have applied our model to the European gas trade in order to study
the impact of shale gas, if it is produced.

» The reference scenario suggests that the shale gas production will reach
11% of the total production in Europe in 2030.

* The shale gas will reduce the prices by 11% and increase the
consumption by 12% on average in Europe by 2030.

* The shale gas will reduce the Russian market share by 9%, principally
because of Poland.
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